
Finite Difference Stencils
Implemented Using Chapel?

Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

Future Technologies Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831

rbarrett,rothpc,spoole@ornl.gov

http://www.csm.ornl.gov/ft

Abstract. Difference stencils are fundamental computations found through-
out a broad range of scientific and engineering computer programs. In
this report we present our experiences implementing stencils using Chapel,
a global view programming language emerging from Cray as part of
the DARPA High Productivity Computing Systems (HPCS) program.
We found that Chapel allows us to express stencils with easy-to-write,
readable, maintainable code, which significantly reduces the chance of
programming errors. Furthermore, because the Chapel constructs we
used represent high-level operations such as a reduction over a multi-
dimensional array, more semantic information is provided to the compiler
giving it more flexibility for producing efficient code for a given target
platform. Although the current pre-release version of the Chapel com-
piler does not yet allow us to generate runtime performance statistics of
our implementations, we discuss how a Chapel compiler might process
the code in order to exploit architectural features, especially those of
peta-scale parallel computing systems.

Key words: Scientific applications, finite difference methods, parallel
programming.

1 Introduction

A broad range of physical phenomena in science and engineering can be described
mathematically using partial differential equations. Determining the solution
of these equations on computers is often accomplished using finite differencing
methods. The algorithmic structure of these method maps naturally to the data
parallel programming model.

Implementing these algorithms effectively is becoming increasingly difficult
as high performance computing architectures become more complex. In order
? This research was performed at Oak Ridge National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

2 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

to address this complexity, the DARPA High Productivity Computing Systems
program[7] is funding the development of new programming languages: Chapel[4]
and X10[12]. DARPA funded the initiation of the Fortress language[1], whose
development continues.

Chapel is being developed as part of the Cray Cascade project. Like Fortress
and X10, it is being designed to provide scientific application developers a means
for easily expressing their algorithms in a form that also enables efficient com-
putation on parallel distributed memory computing systems.

In this report, we present our experiences exploring the capabilities and ex-
pressiveness of Chapel, purposefully investigating syntactic and semantic ap-
proaches for implementing these difference stencils. We discuss how a Chapel
compiler might translate our Chapel expressions of finite differencing methods
to make effective use of the target platform’s characteristics. Although we are
not presenting a true productivity study, we will point out issues relating to this
complex notion as they are encountered.

We begin by describing the use of stencils in finite difference methods. Next,
we present an overview of Chapel, and describe the syntax and semantics we used
for this work. Then, we present a set of constructs designed to progressively
lead to an effective implementation of these stencils from a single processor
perspective. Following this, we discuss the constructs that distribute the problem
across the parallel processes, then speculate on the performance issues associated
with our implementations. Last, we offer our conclusions and present potential
directions for our future research with Chapel.

2 Finite Difference Stencils

Finite difference methods are mathematical techniques for approximating deriva-
tives or a differential operator by replacing the derivatives with some linear com-
bination of discrete function values. An example of one such differential equation
is Poisson’s equation:

−(uxx + uyy) = f(x, y), (1)

perhaps defined on

Ω = [0, N]× [0, N],with u = 0 on δΩ.

(This equation is often written as∇2ϕ = f .) We discretize Ω with resolution 1/h,
resulting in (N/h) + 1 = n grid points in each dimension. During an iteration,
each grid point is updated as a function of the current value of it and some
combination of its neighbors. This computation is often described as applying a
stencil to each point of the grid. We illustrate a 5-point stencil in two dimensions
pictorially in Figure 1 and notationally as

ut+1
i,j =

ut
i,j−1 + ut

i−1,j + ut
i,j + ut

i+1,j + ut
i,j+1

5
, for i, j ∈ 1, . . . n2. (2)

Finite Difference Stencils Implemented Using Chapel 3

Fig. 1. Solving the 2d Poisson Equation using a 5-point difference stencil.
The figure on the left shows the Poisson Equation defined on a continuous do-
main, with Dirichlet boundary conditions. The center figure shows the domain
discretized, with a 5-point difference stencil, in red. The figure on the right shows
the domain divided up as blocks for mapping to a parallel processing computer.
Here the stencil requires data located on different parallel processes.

Figure 2 shows a parallel implementation of equation (2), using Fortran and
some method of explicit parallelism for sharing the internal boundaries created
by the decomposed domain, abstracted into procedure EXCHANGE BOUNDARY. In a
message passing environment, this abstraction would require the determination
of neighbors with which to exchange messages, the location of the data to be
transmitted, and the mechanics of the data transfer.

As described, our use of stencils presumes regular, equally spaced grid points
across the global domain. This assumption significantly simplifies the implemen-
tation of the stencil algorithms, allowing us to focus on the aspects of interest
in our experiments. However, an endless variety of stencils may be created. For
example, excluding the points diagonally adjacent to the center point ui,j creates

real, dimension(NROWS LOCAL+2,NCOLS LOCAL+2) :: GRID NEW, GRID OLD

call EXCHANGE BOUNDARY (...)

do J = 2,NCOLS LOCAL-1
do I = 2,NROWS LOCAL-1

GRID NEW(1,J) = (&
GRID OLD(I-1,J) + &

GRID OLD(I,J-1) + GRID OLD(I,J) + GRID OLD(I,J+1) + &
GRID OLD(I+1,J)) &

/ 5.0

end do
end do

Fig. 2. Fortran implementation of a 5-point stencil in 2d.

4 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

a five-point stencil, dividing the sum by five rather than nine. In three dimen-
sions, the five-point stencil may be extended to a seven-point stencil by including
the neighbors to the front and rear of center point ui,j,k and dividing by seven.
Stencils may involve more, or even blocks of, distant neighbors. Furthermore, the
contribution from a grid point may be quantified as a function of some weighting
scheme other than the uniformity we presume here.

In the next section we briefly describe Chapel syntax and semantics, which
will then allow us to present implementations of some of these stencils as well
as discuss how others may be formulated.

3 Overview of Chapel

Scientific applications are most often parallelized using functionality defined by
the Message Passing Interface (MPI)[18, 11]. Programs written using MPI de-
fine a collection of processes, each with its own private address space, which re-
quires the code developer to explicitly manage the distribution and movement of
data among the parallel processes. Popular alternatives include Co-array Fortran
(CAF)[15], which makes data globally accessible via the co-array load and store
semantics; Unified Parallel C (UPC)[10], which extends the C programming lan-
guage to include a shared memory view of computation; and OpenMP[6], which
presents a shared memory view of computation.

Chapel, as well as Fortress and X10, abstract the parallel processes from the
view of the programmer. This “global view” model is designed to simplify the
expression of a given algorithm as a parallel computation. This distinction is
described with an example, extended from that described in section 2.

As graphically illustrated in Figure 3, a partial differential equation (here

Fig. 3. Global view vs. fragmented view parallel programing model.

again Poisson’s Equation) is defined on a two dimensional domain, illustrated
by the center picture. Typically a rectangular domain is divided into blocks,
with each block ”assigned” to a parallel process. The stencil computation, then,
induces an inter-process data sharing requirement along the data boundaries on
a given process.

Finite Difference Stencils Implemented Using Chapel 5

The fragmented view configuration for applying a solution algorithm on a
parallel processing computer is shown on the right. Here the code developer
must manage the interaction of the parallel processes as well as the overall data
layout, including explicit control over the sharing of data among the individual
blocks. This is usually accomplished by surrounding each block with a “halo”
in order to control data movement (as indicated by the arrows) and maintain
coherency. A global view language such as Chapel captures data associated with
the problem in a single structure which it (as well as a fragmented model) may
then surround with space for the physical boundary conditions. Although the
the code developer is not responsible for distributing and sharing data amongst
the parallel processes, effective performance compels the language to provide a
means for conveying information regarding parallelism in the problem.

Previous attempts at providing a global view of parallel computation have
met with limited acceptance. With regard to HPF[16], from a performance per-
spective, this is attributable in large part to the lack of language constructs for
effectively expressing the intent of the computation in a manner that could be
exploited by the compiler and runtime system. And while OpenMP[6] presents a
global view through the definition of a set of compiler directives and associated
syntax, it is limited to regions of physically shared memory. In order to span
multiple regions, OpenMP may be combined with MPI, which then creates a
fragmented view.

Chapel, as well as Fortress and X10, strive to combine the strengths of these
existing programming models while avoiding their weaknesses. Chapel pursues
this goal by providing a global view of parallel programming based around the
definition of a domain. It gives the programmer control over the parallelism of the
application, specifically the data distribution and associated inter-process data
sharing. The overall goal is to combine a global view of the program with the
tools necessary for injecting high-level programmer “intent” that the compiler
cannot easily discover in more traditional programming models. With its global
programming model, Chapel bears some similarities to HPF, ZPL[3], and the
Cray MTA extensions to C and Fortran[5].

At the time of this writing, the Chapel language specification is at version
0.702. A prototype compiler (pre-release version 0.4) has been provided to a small
group of programmers who are gaining experience and providing feedback to the
Chapel developers. However, the compiler is limited to serial ”proof-of-concept”
execution, and thus performance data will not be reported herein.

Syntax

Unlike languages like HPF, CAF, UPC, and Titanium, which extend well-
established serial languages to include a parallel processing capability, Chapel
defines a new language. However, code developers will likely find its semantics
and syntax familiar in many ways. Like C, executable statements are terminated
by a semi-colon, brackets define executable blocks, variables can be declared (and
initialized) within executable blocks, and variables can be re-cast. Like Fortran,
multidimensional array indices, bounded by user defined values, are indexed

6 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

within parenthesis, variables can be explicitly typed or defined by their initialized
value, and modules define name spaces and are included in the compilation unit
via the use statement. Like C#, C++, and Java , object-oriented programming
is possible with Chapel, and comments can either be captured within a block by
slash-star star-slash (/* Comment */) or prepended by double slash (//).

Chapel lets the code developer define a broad set of data structures using
a domain. In some (limited) sense, this is analogous to Fortran, in that it can
be viewed as defining the size and shape of an array. However, domains are not
limited to rectilinear structures: they can, for example, describe sparse arrays,
graphs, sequences, and indexing sets, making Chapel applicable to a broad range
of scientific applications.

Multi-dimensions may be described using tuples which aid readability by
combining index counters (i and j) into a single variable k. Its important to
note that Chapel does not impose a memory layout requirement on the arrays
defined using these data structures.

Parallel Semantics

Chapel provides a global view of parallelism by qualifying a domain with
a distribution, which defines how arrays allocated with those domains are de-
composed across the parallel processes. These mechanisms enable a parallel per-
spective of the computation regardless of the underlying mechanisms for parallel
execution. Current distribution options include block, cyclic, block-cyclic, and
cut.

The difference stencils described in this report were written using the data
parallel model, based on arithmetic domains, which are rectilinear sets of Carte-
sian indices of an arbitrary rank, and sparse domains, which are subset of arith-
metic domains. The forall iterator is the mechanism for expressing a parallel
computation over a domain’s indices. The combination of the domain, distribu-
tion, the forall iterator, tuples, and the unconstrained memory model provides
the compiler and runtime system with significant flexibility for mapping the
problem space to the architecture.

Task parallelism is supported, though not used in our work reported herein.
With regard to parallel programming, Chapel bears some similarities to HPF,

ZPL[3], and the Cray MTA extensions to C and Fortran[5].

4 Implementations

We begin by defining a 9-point stencil in two dimensions, which includes the grid
points diagonally adjacent to the center point in the 5-point stencil described in
Equation 2. We extend this implementation to three dimensions by defining a
27-point stencil. We then modify these stencils by applying weights to the grid
points. Next, using sparse domains, we construct 5-point and 7-point stencils
in two and three dimensions, respectively. We then define the domains using
distributions, so that the data and associated operations are spread across the

Finite Difference Stencils Implemented Using Chapel 7

parallel processes. Finally, we highlight Chapel’s polymorphic capability for these
computations.

4.1 Basic stencils

The first task in implementing a function that applies a difference stencil is to
define Chapel domains over which to iterate. We define an arithmetic domain
ProblemSpace which describes the grid points in the physical domain. We define
a second domain, AllSpace which describes the grid points plus “ghost points”
for applying the boundary conditions1. Our first cut at a Chapel implementation
of the nine-point stencil is shown in Figure 4.

const
PhysicalSpace = [1..m, 1..n], // Grid points in the 2d physical domain.
AllSpace = PhysicalDomain.expand(1); // Physical domain plus boundary.

var
newGrid, oldGrid

: [AllSpace] real;

// Define neighbors:

const
NW=(-1,-1), N=(-1,0), NE=(-1,1), W=(0,-1), E=(0,1), SW=(1,-1), S=(1, 0), SE=(1,1);

forall k in PhysicalSpace do

newGrid(k) = (
oldGrid(k+NW) + oldGrid(k+N) + oldGrid(k+NE) +
oldGrid(k+W) + oldGrid(k) + oldGrid(k+E) +
oldGrid(k+SW) + oldGrid(k+S) + oldGrid(k+SE))

/ 9.0;

Fig. 4. Chapel 9-point stencil on a 2d domain using tuple arithmetic.

Array offset indexing complexity is reduced and readability is increased by
combining the i and j indices into the single tuple k and defining parameterized
tuple addition2. In addition to coding simplification, the global view of the iter-
ation, enhanced by the single loop expression enabled by the use of the tuple k,
provides greater flexibility to the compiler for applying its strategies for achieving
performance. For example, unconstrained by a requirement for row- or column-
major ordering, the compiler may lay out memory as it sees fit. Moreover, data
may be decomposed across the parallel processes in a manner that maps best to
the particular architecture, taking advantage of memory hierarchies, processor
heterogeneity, and perhaps other features of the computing environment.
1 A new feature lets us define AllSpace as an expansion of ProblemSpace. The syntax

is AllSpace = ProblemSpace.expand(1). In addition to coding convenience, this
relationship could be exploited by the compiler.

2 Tuple addition is explicitly defined in our code, but is slated for inclusion in the
Chapel language specification.

8 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

We can improve this implementation by noting that the application of the
stencil operation to a grid point and its neighbors may be posed as a reduction.
This perspective enables an even more compact and descriptive implementation
than our initial attempt, as shown in Figure 5.

const
PhysicalSpace = [1..m, 1..n],
AllSpace = PhysicalDomain2d.expand(1);
Stencil9pt = [-1..1, -1..1];

var
newGrid, oldGrid

: [AllSpace] real;

forall k in PhysicalSpace do
newGrid(k) = (+ reduce [i in Stencil] oldGrid(k+i)) / 9.0;

Analogously, a 27-point stencil in a 3d domain could be written as

const
PhysicalSpace = [1..m, 1..n, 1..p],
AllSpace = PhysicalDomain3d.expand(1),
Stencil = [-1..1, -1..1,-1..1];

var
newGrid, oldGrid

: [AllSpace] real;

forall k in PhysicalSpace do
newGrid(k) = (+ reduce [i in Stencil] oldGrid(k+i)) / 27.0;

Fig. 5. Chapel reduction operator based stencils

The notation

[i in Stencil]

is equivalent to

forall i in Stencil do

which aids readability in this context.
In addition to producing more readable code, this reduction-based approach

conveys the intent of the stencil computation to the compiler in addition to
the data structure in the domain definition, possibly enabling the compiler to
produce a more efficient computation for a given target platform.

4.2 Weighted stencils

In many contexts the stencil involves a weighting of the grid points. This may
be necessary in order to impart an actual contribution of the grid point, or may

Finite Difference Stencils Implemented Using Chapel 9

even be for other purposes, such as a formulation of a matrix-vector product,
where the “weights” are actually the matrix coefficients.

Adding weights to the grid points in a Fortran stencil implementation, anal-
ogous to the 5-point stencil shown in Figure 2, increases the complexity of the
code, especially with regard to indexing requirements, as illustrated in Figure 6.

real, dimension(NROWS LOCAL+2,NCOLS LOCAL+2) :: A, X, Y

do J = 2,NCOLS LOCAL-1
do I = 2,NROWS LOCAL-1

Y(1,J) = &
A(I-1,J-1)*X(I-1,J-1)+A(I-1,J)*X(I-1,J)+A(I-1,J+1)*X(I-1,J+1)+ &
A(I ,J-1)*X(I ,J-1)+A(I, J)*X(I, J)+A(I ,J+1)*X(I ,J+1)+ &
A(I+1,J-1)*X(I+1,J-1)+A(I+1,J)*X(I+1,J)+A(I+1,J+1)*X(I+1,J+1)

end do
end do

Fig. 6. Fortran weighted stencils

Adding this same weighting scheme to the Chapel implementation shown in
Figure 5 simply requires the insertion of the weighting array, as shown in Figure
7.

const
PhysicalSpace = [1..m, 1..n, 1..p],
AllSpace = PhysicalDomain.expand(1);
Stencil = [-1..1, -1..1,-1..1];

var
A, X, Y

: [AllSpace] real;

forall k in PhysicalSpace do
Y(k) = (+ reduce [i in Stencil] A(k+i) * X(k+i));

Fig. 7. Chapel reduction operator based weighted stencils

4.3 The 5-pt stencil: sparse domains

At first glance the 5-point stencil might be viewed as a subset of the 9-point
stencil. While true from the Fortran+MPI perspective as well as for the Chapel
implementation using parameterized tuple arithmetic (analogous to the imple-
mentation shown in Figure 4), it does not map directly to the reduction config-
uration we prefer since we can’t define the stencil as a regular block required by
the arithmetic domain. Thus far we have two options for addressing this. First,

10 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

we could view the 5-point stencil as a 9-point stencil, setting corner coefficients
to zero (with the associated multiplication perhaps recognized and eliminated by
a compiler[9]). This has the advantage of simplicity, and could result in strong
performance due to the regular blocks. However, we don’t want to make such
presumptions here, and more importantly, a language should be able to support
this operation as well as it supports the 9-point stencil.

Our solution is to configure the stencil as a sparse domain, defined as a
subset of the 9-point stencil arithmetic domain. While this capability is not yet
implemented in the compiler, nor even fully specified, we can sketch the idea,
shown in Figure 8.

1 const
2 PhysicalSpace = [1..m, 1.n]
3 AllSpace = PhysicalSpace.expand(1);

4 Stencil9pt = [-1..1, -1..1],
5 Stencil: sparse subdomain(Stencil9pt) = ((-1,0), (0,-1), (0,0), (0,1), (1,0));

6 var
7 A, X, Y
8 : [PhysicalSpace] real;

9 forall i in PhysicalSpace do
10 Y(i) = (+ reduce [k in Stencil] A(i+k)*X(i+k);

Fig. 8. Chapel 2d 5-point stencil.

The sparse domain creates the 5-point stencil by selecting a subset of the
dense arithmetic domain which defines the 9-point stencil. As with the 9-point
stencil, the reduction operator is controlled by the Stencil domain, providing
access into the grid point data and their weights. The stencil pattern can be set
several ways, including as a runtime conditional statement (shown in Figure 9),
which might be useful in other situations.

1 const
2 Stencil: sparse subdomain(Stencil9pt) = [(i,j) in Stencil9pt]
3 if (abs(i) + abs(j) < 2) then (i,j);

Fig. 9. Runtime conditional stencil configuration.

4.4 Parallel implementation

Typically a rectangular domain is divided into blocks, with each block ”assigned”
to a parallel process. The stencil computation, then, induces an inter-process
data sharing requirement along the data boundaries on a given process.

Finite Difference Stencils Implemented Using Chapel 11

As previously discussed in section 3, when using the fragmented-view model,
the code developer typically divides the domain into blocks, assigning each to a
parallel process. For our purposes here, we will presume the same decomposition
for the Chapel implementation. However, the code developer simply qualifies the
domain definition with this decomposition and lets the compiler and runtime
system take care of the details. Based on available hardware capabilities, we
could envision a configuration that does not simply map this to a halo exchange
algorithm[2]. However, a halo distribution has been proposed[8], which may be
desirable in many situations.

An array is decomposed across the parallel processes by adding a distribution
to the domain that defines its structure. The syntax for this is shown in Figure
10.

const
PhysicalSpace : domain(2) distributed(Block) = [1..m, 1..n],
AllSpace = PhysicalDomain.expand(1);

var
newGrid, oldGrid

: [AllSpace] real;

Fig. 10. Domains defined with a block distribution across the parallel processes.
The red highlighted text is the distribution syntax.

4.5 Polymorphism

The alert reader will notice an important characteristic of our reduction-based
implementations: we can write the actual computation so that it need not change
as we apply different stencils to different dimensions. That is, we can change the
stencil simply by changing the definition of the array domain.

forall k in PhysicalSpace do
Y(k) = (+ reduce [i in Stencil] A(k+i) * X(k+i)) / val;

Fig. 11. Polymorphic Chapel stencil operator

We qualify this observation with the realization that we may not want to
include the weighting array or the divisor scalar for all situations. However,
regardless of the sort of structure the domains define (e.g. rectilinear, sparse,
graph, etc.), the computation code can remain unchanged. And since domains
are defined as variables (or parameters), they may be passed throughout an
application as could any other variable or parameter.

12 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

5 A Brief Note Regarding Performance Expectations

For our purposes, Chapel success is strongly tied to its performance on HPC
platforms. In a sense then, our work here forms the basis for a study on the
performance potential of Chapel.

The global expression of an algorithm can provide meaningful flexibility to
the compiler, enabling a basis for strong use of asynchronous communication,
sharing data as it is needed, taking advantage of architecture specific runtime
capabilities, etc. For example, a reduction over an array whose structure is well-
defined provides a strong description of the intent of the stencil computation.
The fragmented view compels the use of halos, which injects synchronization
in order to manage the transfer of data. Although we can envision a similar
implementation by a Chapel compiler, this is not an inherent characteristic.
Further, the lack of a memory layout constraint may enable even more effective
use of architecture specific characteristics.

As Chapel compilers mature, We look forward to analyzing the performance
of these stencil computations as well as our developing implementations of other
computational kernels as compiler development progresses.

6 Conclusions and Future Work

In this report we described our experiences implementing difference stencils us-
ing Chapel, a language emerging from the Cray Cascade project as part of the
DARPA HPCS program. With Chapel, we were able to write concise descriptions
of multidimensional stencil code for use in, for example, solving discretized par-
tial differential equations. This combination of computation and data structure
specification will provide the compiler writer with the information necessary to
produce a higher level of optimization for the application. This in turn will en-
able a greater level of performance for the system. Prior work in this area leads
us to believe these stencil computations can execute at high efficiencies using
this desirable global view programming model[17, 9]. When support for parallel
computation becomes available, we will evaluate and report on the performance
of the code presented in this report.

In addition to the work described in this paper, we are investigating the use
of Chapel to express the ASC[14] computational kernel known as “sweep3d”[13].
This kernel forms the heart of application programs that solve the deterministic
neutron transport problem. Current work is mostly a translation of the existing
Fortran/MPI implementation, but we are also designing a Chapel implementa-
tion of this computation from First Principles.

In addition to Chapel, we are investigating the suitability of the new lan-
guages X-10 from IBM[12] and Fortress from Sun[1] to this and other work.
Continued work in this direction will enable future comparisons of the strengths
and weaknesses of these languages for parallel scientific computing.

Finite Difference Stencils Implemented Using Chapel 13

Acknowledgements: We are grateful to Brad Chamberlain, the Technical Lead
of the Chapel project, for invaluable discussions, advice, and code review. He
has taken seriously our many discussions regarding our perceptions of the value
of existing as well as potential functionality in the Chapel language. We extend
this gratitude to all members of the Chapel team who, through Brad, aided our
efforts.

References

1. E. Allen, D. Chase, J. Hallet, V. Luchangco, J. Maessen, S. Ryu, G. L. Steele
Jr, and S. Tobin-Hochstadt. The Fortress language specification, version 1.0.β.
Technical report, Sun Microsystems, Inc., 2007.

2. R.F. Barrett. Co-Array Fortran experiences solving PDE using finite differencing
schemes. In Proceedings of the 48th Cray User Group, May 2006.

3. B.L.Chamberlain. The Design and Implementation of a Region-Based Parallel
Programming Language. PhD thesis, Department of Computer Science and Engi-
neering, University of Washington, 2001.

4. B.L. Chamberlain, D.Callahan, and H.P. Zima. Parallel programming and the
Chapel language. International Journal on High Performance Computer Applica-
tions, To appear, 2007.

5. Cray, Inc. Cray MTA-2 Programmer’s Guide. S-2320-10, 2005.
6. L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory

programming. IEEE Computational Science and Engineering, 5(1), 1998.
7. DARPA. High Productivity Computing Systems program.

http://www.darpa.mil/ipto/programs/hpcs, 1999.
8. R.E. Diaconescu and H.P. Zima. An approach to data distribution in Chapel.

International Journal on High Performance Computer Applications, To appear,
2007.

9. S. J. Dietz, B.L. Chamberlain, and L. Snyder. Eliminating redundancies in sum-of-
product array computations. In Proceedings of the ACM International Conference
on Supercomputing, 2001.

10. T.A. El-Ghazawi, W.W. Carlson, and J.M. Draper. UPC language specification,
version 1.1.1. http://www.gwu.edu/∼upc/documentation.html.

11. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI: The Complete Reference: Volume 2 - The MPI-2 Extentions.
The MIT Press, 1998.

12. IBM. Report on the experimental language X10,
draft v 0.41. IBM TJ Watson Research Center,
http://domino.research.ibm.com/comm/research projects.nsf/pages/x10.index.html,
February, 2006.

13. Accelerated Stratigic Computing Initiative. The ASCI sweep3d Benchmark Code.
http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d, 1995.

14. Lawrence Livermore National Laboratory, Los Alamos National Laboratory,
and Sandia National Laboratories. The Advanced Simulation and Computing.
http://www.sandia.gov/NNSA/ASC, 1995.

15. R.W. Numrich and J.K. Reid. Co-Array Fortran for parallel programming. ACM
Fortran Forum, 17(2):1–31, 1998. http://www.co-array.org.

16. High Performance Fortran Forum. High Performance Fortran language specifica-
tion. Technical Report CRPC-TR92225, Center for Research on Parallel Compu-
tation, Rice University, Houston, TX, 1993.

14 Richard F. Barrett, Philip C. Roth, and Stephen W. Poole

17. G. Roth, J. Mellor-Crumey, K. Kennedy, and R. G. Brickner. Compiling sten-
cils in high performance fortran. In SC’97: High Performance Networking and
Computing, 1997.

18. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
Complete Reference: Volume 1 - 2nd Edition. The MIT Press, 1998.

